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J. Phys. A :  Math., Nucl. Gen., Vol. 6, March 1973. Printed in Great Britain. 0 1973 

On the quantum mechanics of chiral dynamics 

John M Charap 
Physics Department, Queen Mary College, Mile End Road, London El 4NS, UK 

MS received 23 October 1972 

Abstract. A quantum-mechanical model of chiral invariance is studied, with particular 
emphasis on problems relating to the order ofnoncommuting factors. The difficulties which 
arise from an incorrect use of the Lagrangian are discussed. Using the canonical approach 
it is shown that the requirement of chiral invariance suffices to remove all ambiguities in 
the Hamiltonian, which is then given in a form analogous to that of the Sugawara model. 
A review, often critical, is made of related discussions by other authors. 

1. Introduction 

This study arose out of an attempt to pursue the feasibility of using a chiral invariant 
theory as the starting point for the description of hadron dynamics. In particular, the 
chiral invariant interactions of a system of zero-mass pseudoscalar mesons provides a 
nontrivial example of what might be the basis of a realistic theory in which of course 
the chiral invariance would be broken, the mesons would have mass, and other particles 
would exist. As is well known this field-theoretic model for a chiral invariant theory 
has as its Lagrange density 

Here @(x) are the fields of the meson multiplet (i = 1,2,. . . , n2 - 1) and g i j  is constructed 
from the fields by a prescription specified in terms of the transformation properties of 
the fields under the action of the chiral group SU(n) x SU(n). Thus if the generators of 
the group are written in the usual way a$ Vi, A', we would write 

[A', = ip(q5). 

The fields transform under the adjoint representation of the parity conserving (diagonal) 
subgroup generated by Vi, but nonlinearly under chiral transformations. The nonlinear 
functionsf" of the fields are not uniquely determined by the group law, but once they 
are given the 'metric tensor' gij is determined unambiguously. (See eg Gasiorowicz and 
Geffen (1969) for a review of this and other relevant material.) 

In most applications the Lagrange density (1.1) has been used only to  lowest con- 
tributing order in a perturbation expansion. This means that only tree-graph diagrams 
contributing to the process under consideration are evaluated. Thus no divergences 
are encountered since there are no loop momenta over which integrations would have 
to be performed, and the problems associated with the nonrenormalizability of (1.1) are 
avoided. Attempts have been made to discuss the inclusion of closed loops (see eg 
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Charap (1970, 1971) and references in this latter paper, especially Gerstein et a /  (1971)), 
and the pion superpropagator has been determined (Davies 1972). However, in these 
discussions attention has not been paid to the need to  consider the order of noncom- 
muting factors which appear in (1.1). The problems of ordering have been discussed 
elsewhere, and we shall return to  the work of other authors in the concluding section of 
this paper. What we want to  do  in this paper is to  consider the question of the order of 
factors if(l.1) is to be taken as the basis for a quantum field theory with chiral invariance. 

This problem of the order of factors is already present in quantum mechanics, and 
since the extra problems associated with field theory might only serve to  obscure the 
main issue, we discuss a system with a finite number of degrees of freedom for which 
the classical Lagrangian, analogous to (1.1) is 

L = +q’gij(q)q’. (1.4) 

This classical system is outlined in 0 2 .  Using what are in essence the methods advocated 
by Dirac, we show in 0 3 how to quantize the system in the canonical way. At this stage 
we retain the ambiguities associated with re-ordering noncommuting factors. In this 
same section we also emphasize that one should not construct a quantum operator 
analogue for (1.4) from which the equations of motion might be derived as Euler- 
Lagrange equations. We show that it is not possible in any but trivial cases for this to 
be done in such a way that the Euler-Lagrange equations of motion are consistent with 
the Hamilton equations, or Heisenberg equations as they are in the quantum-mechanical 
formulation. 

For this reason we prefer t o  discuss the imposition of a symmetry on the theory in 
the canonical, Hamiltonian formulation, rather than with the Lagrangian, as is perhaps 
more familiar. Section 4 is concerned with the imposition of chiral invariance. There 
are of course ambiguities associated with the construction of operators V i  and A’ which 
generate the algebra and which have an action on the variables qk analogous to (1.2) 
and (1.3). These ambiguities are associated with trivial unitary transformations of the 
representation of the algebra, but once the group generators are constructed the Hamil- 
tonian, if it is to  be invariant, is uniquely determined, with the ambiguities associated 
with factor ordering completely removed. The result is in fact just a constant multiple 
of the quadratic Casimir operator. This ‘charge-charge’ form for the Hamiltonian is 
highly reminiscent of the ‘current-current’ form of the energy-momentum tensor in the 
model of chiral invariant field theory proposed by Sugawara (1968). We conclude 4 4 
with a brief discussion of the Schrodinger representation of our model. Finally, in 0 5, 
we discuss our result and compare it with the work of other authors. 

2. A classical system 

Consider first a classical system with generalized coordinates qi(i = 1,2,. . . , n), and 
corresponding velocities 4’. Suppose that the Lagrangian for the system is of the form 

where the g i j  are as yet unspecified functions of the coordinates q. We may without loss 
of generality suppose that the matrix )Igijjl is, however, symmetrical. Canonically 
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conjugate to  the coordinate qi is the momentum pi, defined as usual by 

aL 
aqi pi E - 

= giJqj. (2.2) 
We henceforth suppose that the matrix Ilgijll is nonsingular, and write its inverse as 
llgijll. Then (2.2) may be inverted to give the velocities in terms of the momenta, 

4' = gijpj. (2.3) 

Following standard procedure, the Hamiltonian is obtained by making the Legendre 
transform 

H(q,  p )  = pi+- L 

= &g"pipj. (2.4) 
Hamilton's equations of motion are q' = dH/dpi, which just recover (2.3), and 

-dH p. = - 
1 

(2.5) 1 j k  
= -2g ,ipjPk. 

The notation introduced here is to write dA/8qi as A,i .  From (2.5) together with (2.2) 
we obtain 

or on applying the identity 

we may recover Lagrange's equations of motion, which are 

The Christoffel symbol Ti, is defined by 

(2.8) 

If the coordinates q are regarded as coordinates of a point in a riemannian manifold A,, 
with metric tensor giJ(q), the equation of motion (2.7) shows that the motion takes place 
along geodesics of A,, . This was in any case to be expected since the Lagrangian (2.1) 
may also be written as 

j = L i j  
rkl - 2g (gik,l +gil,k - g k d  

1 dq'dqj L -g..--- 
2 I J  (dt)' 

= 
2 dt 

where 

ds2 g,,dq'dq' 

is the metric of A,, 
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3. The quantum-mechanical analogue 

If we wish to construct a quantum-mechanical analogue to the classical system described 
in the previous section, it is permissible to start by writing down the canonical com- 
mutation relations 

[ q i , p j ]  = i6j 

[q',qj] = 0 

b, ,Pj l  = 0. 

To specify the dynamics we must choose a hamiltonian operator which is of the same 
form as in the classical case (equation (2.4)) ; but we are now required to specify an order 
in which the factors are to be written. The most general form is equivalent to taking 

H = + { p i ,  { P j ,  g"}} + $ ( P i ,  ui} +1;. (3.4) 
We have used the notation { A , B }  to denote the anticommutator of two operators, 
( A ,  B )  AB + BA,  and have introduced ui and U ,  arbitrary functions of the coordinate 
operator q. If these functions tend to zero with the Planck constant, and if the matrix 
llgijll is the same function of the operators q as was the matrix /[gijll of the coordinates q 
in the classical case, it is clear that H as defined in (3.4)is a suitable quantum Hamiltonian 
analogous to (2.4). Furthermore if ui and U are real functions, H is hermitian. 

The Heisenberg form of the equations of motion give 

4' = i[H, q'] 

= *{ gik, Pk}  f ui 

and for any function G(q), 

G = +{G,k ,  q k } .  

We also have 

Equation (3.5) may be inverted to obtain 

pi = *{ g, 1 q k )  - ui 

ui G g..u'. 1J (3.9) 

(3.8) 

where we have introduced ui defined by 

The problem we wish now to consider relates to the Lagrangian. There is a certain 
amount of confusion about the role of the Lagrangian in quantum mechanics. We do  
not wish to make any comment about the Feynman method of quantization in which 
the Lagrangian appears as a c number, and the subtleties of ordering noncommuting 
factors are translated into subtleties of definition of functional integrals. In the more 
conventional methods of passage from a classical to a quantum-mechanical description 
of a system, it is a canonical formulation which is used, in which coordinates and 
momenta are the dynamical variables, and velocities are given a meaning only through 
the equations of motion. Nonetheless, especially in formulating relativistic quantum 
field theories, it often happens that an expression in terms of coordinates and velocities 
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(or fields and their gradients) is described as a Lagrangian, and equations of motion 
derived as Euler-Lagrange equations, even though the formulation is supposed to be 
quantum mechanical, not classical. 

What we want to criticize then is this use of an operator function L of coordinates 
and velocities, treated as though one can proceed as in classical mechanics to derive 
the equations 

aL _ -  ad[ - Pi 

and (Lagrange's equations) 

(3.10) 

(3.1 1) 

The difficulty lies in giving a meaning to the partial differentials with respect to q numbers 
on the left hand sides of these equations. The correct and conventional approach is to 
find some way to replace the partial differentials by commutators. Clearly this is not 
going to be easy, for although we have 

[q', qj] = 0 ( 3 4  
using (3.5) we obtain 

Lqi, $1 = igij (3.12) 
and 

[$, $1 +i{ @, (gifgjm - gjfgim)gkm,f} - i(g"uj, - gjfufl). (3.13) 

What is certainly true is that any definition of the partial differentiation must obey the 
usual rules for differentiation (in particular Leibniz' rule for products) and will respect 
the order of q number factors. 

To satisfy (3.10), the Lagrangian must be quadratic in the velocities, so we may write 

= ${dk, {#ygkl})-i{dkj ak}-w. (3.14) 

Consistency of (3.8) and (3.10) then implies the unsurprising identifications 

(3.15) 

(3.16) 

On the other hand to make (3.11) consistent with (3.7) we require in addition 

4(0- W - i u k u k ) , i  +gt[(gkfgf:),r = 0. (3.17) 

These equations may be treated as equations for the determination of w, but being 
partial differential equations they are not even self-consistent unless appropriate 
integrability conditions are satisfied. These conditions, 

$(gkfgf:),rj = gtJ(gkfgf:),ri (3.18) 

are by no means trivial. Indeed for most cases of interest, and certainly in general, they 
are not satisfied. This means that in general there is no choice of Lagrangian for which 
the Lagrange equations of motion (as we have interpreted them) are consistent with the 
canonical Hamilton-Heisenberg equations. 

As we have indicated, the difficulty is associated with the appearance on the right 
hand sides of (3.12) and (3.13) of q numbers. To see more clearly how this leads to the 
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root of the problem, we recognize that what we are seeking are two sets of operators 
A i  and Bi so defined as to  make acceptable the replacements 

Evidently these require 

i[qj, Ai] = Si 

i[$, A,]  = 0 ;  

i[qj, Bi] = 0 

i[$, L?,] = Si. 

and 

I t  is the first of these pairs of equations which is the principal stumbling block. For a 
consideration of the Jacobi identity for the double commutators of A i ,  q’ and i lk shows 
there to be no solution unless the matrix llgijll is constant. 

The second pair of equations can be solved in the special case when the velocities 
commute. This situation is not of interest for problems like those of chiral dynamics. 

We conclude that there really is no way to  give a satisfactory meaning to the 
Lagrange equations of motion in the quantum-mechanical treatment unless l ~ g i j ~ ~  is 
constant, and of course in that case (3.17) becomes 

(3.18) v - w - y  uk = constant; 

Since in any case from (3.4) and (3.13) we have 

l k  

the constant may without loss of generality be set equal to zero. 

H + L  = ~ { p i , 4 ’ } + ( u - k V W - ~ u k U k )  (3.19) 

we learn that the Lagrangian and the Hamiltonian are, in the case of constant g,,, 
connected by the Legendre transform 

L = $ { p i ,  4’ )  - H. 
The case of constant llgijll is not of any interest however. For noting that llgijll is a 

positive-definite matrix, it has a real matrix square root llr,,Il. The change of variables 
from q to Q given by 

Q’ = hikrk,q’ 

then reduces the original classical Lagrangian to the Lagrangian 

L = $@sijQj 

of a free system. 

4. Symmetry 

(3.20) 

In this section we wish to explore the consequences for the expressions gij, u i  and v 
which enter into the equation (3.4) for the Hamiltonian if the system possesses a group 
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G of symmetries generated by some Lie algebra. Suppose therefore that there are a set 
Fa, a = 1,2,. . . , N ,  of operators with the commutation relations 

[F", Fb] = ifobCFC; (4.1) 

the c numbersPbc are the structure constants of the algebra. Suppose further that the 
action of the group is pointwise on the manifold A,, with coordinates qi, so that 

[F',qi] = if"'(q) (4.2) 

for some functionsf"'. The group structure, as embodied in the Jacobi identity for the 
double commutators of Fa, Fb and q', leads to 

f ' j f b i , j - f b j f " i , j  = f " b c f c i .  (4.3) 

We must determine the action of the group on the momenta pi .  If we suppose the 
action of G to be linear in the momenta, then for some functions h'ji(q) and h",(q), we 
have 

[F",pi]  = -$i{h"ji,pj} +ihai. (4.4) 

haji = f " j , i  (4.5) 

ha I , J  . = ha J . i '  (4.6) 

Pi  = (4.7) 

pihb,-fbih", = f"bchf (4.8) 

The Jacobi identity on the double commutators of Fa, p i  and q j  implies 

whilst that on F", p i  and p j  implies 

From this it follows that there exist functions h'(q) for which 

The Jacobi identity for F", Fb and p i  then implies 

which is equivalent to the group law 

[F", hb] - [Fb, h q  = ifobchc. (4.9) 

We note that if h is any dynamical variable, then an application of the Jacobi identity 
shows directly that h", given by 

ha = -i[F", h] (4.10) 

is a solution to (4.8) or (4.9). 
From (4.2) and the equation obtained from (4.4), namely 

[Fa, pJ = -${ p j }  +ih",i (4.1 1) 

it follows that the generators may be expressed as 

Fa = - i { f o i ,  p i }  +ha. (4.12) 

We are now in a position to evaluate [Fa, HI using (3.4). The result is 

[Fa, K ]  = - $ { p i ,  { p j ,  I@}} -${pi, Pi} -iK" (4.13) 
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where the various functions K of q are given by 

Kaij = f a j , k g i k  + f a i , k g j k  - f ah g i j  ,k (4.14) 

= ~ i , j u j - f a j u i , j - ~ i j h a , j  (4.15) 

and 

Ka = $fak,ijgij,k - ha,'ui. (4.16) 

The condition for the group G generated by the Fa to be a symmetry is 

[ F a , H ]  = 0 (4.17) 

which means then that all the functions K must vanish. 
The conditions imposed by the vanishing of K"" are already applicable in classical 

theory. They are none other than Killing's equations for gij which are the conditions 
that gijdq'dqj shall be a group-invariant metric on A',,. One situation which might 
arise is when the action on A!,, is linear. Killing's equations then imply that g'j is a 
second rank tensor of the group. This is not the situation we wish to consider, rather 
let us suppose the action of G to be nonlinear. There is still a solution to Killing's 
equations, namely 

g i j  = v e a b f a i f b j  (4.18) 

where v is an arbitrary constant (which may be chosen so that g" = 6" for q = 0) and 
eab is the matrix inverse to eab, which is in turn given by 

(4.19) 

For the situation of principal physical interest, to which we henceforth confine 
ourselves, G will be a chiral group ; G = SU(m), x SU(m),. The suffices L and R 
distinguish between the 'left hand' and 'right hand' subgroups, which are interchanged 
by the parity operation which is an external automorphism of G. The case of physical 
interest is then obtained by asking that the parity-conserving 'diagonal' subgroup SU(m) 
of G shall act linearly on G. The coordinatesq'(i = 1,2, . . . , n = mz - 1) transform under 
the adjoint representation of this diagonal subgroup. If the generators Fa are separated 
into the two sets F'; and F'_ , generators of the commuting SU(m), and SU(m), respec- 
tively, ( N  = 2(m2 - l)), then, with a corresponding notation we have 

f X  = f i j ( q ) + f i j k q k  (4.20) 

where the matrixf'j is a symmetrical second rank tensor of the diagonal subgroup and 
is an even function of q. The constantsf'j, are the structure constants of the diagonal 
subgroup, The matricesf? are nonsingular. We also note that (4.18) may be replaced 

(4.21) 

We turn next to the equations consequent upon the vanishing of Kai .  Let us define 

(4.22) 

e a b  = f a C d  f d b c .  

by 

again v' is a normalization constant. 

k i  by 

g" = v's,,fyfy = V'G,,fy-': ; 

kj I t -  = f j i u  r t i .  

Then using (4.21) we have 

v'd,, fykk' ,  = u j  (4.23) 
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so that the vanishing of K"', 
g"h",j = f o i , j U J  - f"JU', j  . .  

is equivalent to 
g"h",j = V ' d k l [ ( f n i , j  f y - p y y , j ) k :  - f  a j  f k i  *kk,j l .  1 

Using (4.3) this leads to 

g"h7,j = -v'6,, f y (  flm,k> + fy jk$, j )  

and 

and 

and 

f ; J ( k i  = 0. 

The invertibility of the matrices / I f  7'11 then allows directly the conclusion 

k*+ +h$ = 0 (4.24) 

so that, using (4.23), 

U' = - v'6,, fk,'h', . (4.25) 

Finally we consider the consequences of the vanishing of the quantities K" defined 

f ( l i , j k g j k , i  = vebc( f b i , j f " , i ) , k p k .  (4.26) 

in (4.16). To facilitate this, let us prove first 

For we have 

v e b c ( f b i , j f C i , i ) , k p k  - f ( l i , j k g j k , i  

= 2vebc( fbi,jkfc',ipk-pi,jkfcj,i f b k )  

= 2vebcfej,i[( fbi ,k fPk-pi ,k  f bk ) , j -  f b i , kpk , j+p i , k  fbk,j]  
- - 2vebcfcj,i(f(lbd f d i , j -  fbi ,kpk, j+foi ,k  fbk, j )  

= 2Vebcpbdfcj,i f d i ,  j - 2vebcpk, J( f bi ,k  yj,i - f bj,i f e i , k )  

= 0. 

In the steps of the proof we have used successively (4.18), (4.3), a rearrangement of dummy 
indices, and the fact that f?bCf.*d is antisymmetrical in c, d whilst ebc is symmetrical in b, c. 
It now follows that 

K" = ($Vebc f b c , j f e j , i  - U ) , k f ( l k  - ha,kUk 
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but using 

U' = - Ve,b f bJha (4.27) 

which is an immediate consequence of (4.25), and also (4.8), we have 

ha,kUk = - ha,kVebc fbkh' 

= - Vebchc(hb,kf(lk + f badhd) 

= - ($vebchbhc),kf(lk. (4.28) 

So we may write 

K" = &ebc f b i , j f c j , i  - U +3vebchbhc),kfak, (4.29) 

The vanishing of K", together with the invertibility of the matrices /I fyll thus leads to 

(4.30) U = $vebc(hbhc + i f  b i i j f c j , i )  

where we have dropped an arbitrary additive constant. 

with. They are 
Before going further, let us collect together the principal equations we wish to work 

H = # { p i ,  {p' ,  g"}} + + { p i ,  U i }  + U  

Fa = - $ { f l l i , p i } + h "  
g i j  = v e a b f ( l i f b j  

U' -Vf?,bh"fbJ 

(3.4) 
(4.12) 

(4.18) 

(4.27) 

and the expression (4.30) for v above. I t  follows directly that we always have 

H = +vea,,F"Fb. (4.3 1)  

All the operators in these equations are hermitian. Since veab is positive definite, it 
follows that H is, as it should be, a positive semi-definite operator. 

It will be seen that the only ambiguity in the expression (4.31) for the group-invariant 
Hamiltonian, given the transformation law (4.2) for the coordinates, is in the functions 
h". In (4.10) we gave a form of solution for these functions. We now show that this form 
is general. For if we define hi by 

hi 7 Vgijf(lJhbeab, (4.32) 

for any functions hb(q) satisfying (4.9), it is straightforward to show that 

hi = h,i (4.33) 

for some function h(q);  and then 

h" = f"ih,i  

= -i[F", h]. 

But if we take P so that 

E'11 = -.+{f"i,Pi} 

(4.34) 
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then it is also true that 

ha = -i[E", h] 

and it follows directly that we have 

Fa = P + h a  
= exp(ih)p exp( - ih). (4.35) 

Thus we see that changing the functions ha in (4.12) is accomplished by a unitary trans- 
formation on the solutions Fa of (4.1) and of H given through (4.31). To within a unitary 
equivalence the group-invariant Hamiltonian is unique. 

Should we wish to set up a representation for the operators on a Hilbert space of 
functions of q, that is, of functions on A,,, we must take a further step. The states are 
represented by wavefunctions $(q), and of course the operators representing the co- 
ordinates q' are just multiplicative. This does not yet specify the form taken by the 
momentum operators pi, because the commutation relations, 

[q', pj] = is:. 

bi,~jl = 0 

have as solution 

(4.36) 

where r is any function of the coordinates q. To determine r it is necessary to specify 
how scalar products are to be taken in the Hilbert space. Let us write 

(4.37) 

where the integration is over the whole of the coordinate space and w(q) is a real non- 
negative weight function. Then the requirement that pj  as given by (4.36) shall be 
hermitian relates r and w through 

r = In Jw. (4.38) 

Corresponding to (4.36) we have 

P. = +i{ fcri, ai} + vir,' 
= ii{ pi, ai} +[E", r]. (4.39) 

We have written ai for the differential operator 8/84'. The second term cannot be 
eliminated by a unitary transformation of course, since r is a real function of q. 

If we ask that the scalar products in the Hilbert space shall be specified in a group- 
invariant fashion, then w(q)d"q must be the group-invariant measure on An . This means 
that to within a constant factor we have 

w ( d =  Jg (4.40) 

where we have introduced g, defined as usual by 

g E detllgijll. (4.41) 
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Then (4.36) becomes 

p .  = -ia.-1-' i 4 0  g),i 
and (4.40) reads 

P = i3( fai, ai} + i$f"'(ln 

It is always true for any symmetric matrix IJgij/l that 

(In g),i = gjkgjk,i 

and since Killing's equations imply 

pig, , = -fa' , , -fa' 
Jk,i ,$ik ,kgij 

we obtain 

f"'(1n g),i = - 2fai,i. 

Hence we have 
Eo = i+{ pi, a,} - i+p i , i  

= y i d i  = i g - 1 / 2 a i g l / 2 f a i .  

For the Hamiltonian this gives 

(4.42) 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

H = +veab@Eb 

-1-ve 2 ab p i a ,  fbQj 

- - i g g - 1 / 2 , j  1 /2  ijz ig g j 
- 

= - -LA 2 2 '  (4.47) 

The Schrodinger equation of motion for the wavefunction $(q, t) ,  normalized so 
Here A2  is the Laplace-Beltrami operator on the curved manifold .An. 

that 

(*I*> =J- 1*(41 t)12g"2(q)dq = 1 (4.48) 

is 

io,$ = HI// = -LA 2 2** 

D,$ E g-114- a 
at 

(4.49) 

Here D, denotes the conservative time derivative, 

(g""*) (4.50) 

which is appropriate to the normalization (4.48) above. In other words, just as  coordinate 
displacements are given by (cf (4.42)) 

a i  = ig'14~~g-114, (4.51) 

so, also, time displacements are given by 

(4.52) a 
at 
- = -ig'1'4Hg-'14. 
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If we define the reduced wavefunction $ by 

we have the normalization 

the matrix elements 

= - i J $*ai$ dq 

and the Schrodinger equation 

Finally we record the forms 
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(4.53) 

(4.54) 

(4.55) 

(4.56) 

(4.57) 

(4.58) 

5. Discussion 

Many of the topics considered in this paper have been treated earlier by other authors. 
The problem of ordering noncommuting factors is of course almost as old as quantum 
mechanics but the first treatment in the spirit of the present paper seems to be by DeWitt 
(1952). In that paper he argues that invariance under an appropriate group of point 
transformations is indeed the criterion which should be adopted in order to resolve 
questions of factor ordering. He considers the Lagrangian (1.4), and its generalization 
(3.14), and makes the sweeping claim that such Lagrangians ‘include all systems in 
nature which satisfy Bose-Einstein statistics’. This claim is repeated in a later paper 
(DeWitt 1957) which continues his treatment of quantum mechanics on curved spaces. 
The emphasis in this paper is on action principles, with which we have not been concerned 
in the present work. 

The breakdown of the usual connection between Lagrangian and Hamiltonian 
through the Legendre transform (2.4) for the quantum-mechanical case has been pursued 
by Sugano and his co-workers (Kiang et al 1969, Lin et al 1970, Sugano 1971, Kimura 
1971, Kimura and Sugano 1972, Ohtani and Sugano 1972). Again they consider systems 
for which the classical Lagrangian is of the form (1.4). They show that when the space 
for which gij is the metric tensor is flat (Rijkl = 0), there exists a point transformation 
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which brings the Lagrangian to  the form (3.20). It should be noted that we used constant 
g i j  to  obtain (3.20), a stronger requirement, but in any case we are agreed that the main 
interest is in curved, not flat, manifolds. In the most recent of the works cited (Ohtani 
and Sugano 1972) consideration was extended to  curved manifolds, but only to  spaces 
of constant ourvature (Einstein spaces). This is indeed adequate for the problem of 
chiral invariant models, for as is well known, the relevant manifolds, even for 
SU(n) x SU(n) are Einstein spaces. They obtain as their Hamiltonian an expression 
which differs from (4.47) only by an arbitrary function of the curvature scalar R ; but, 
since in any case R is a c number, this makes no difference to the dynamics. They show 
that the Lagrangian 

does yield the same equations of motion as the Hamilton-Heisenberg equations, but 
only with a variational principle which differs from the usual one in that the variations 
are restricted so that 

The form of the Hamiltonian derived by Ohtani and Sugano was already given by 
DeWitt (1957). He gives some discussion of the extra term involving R (this term can, 
on dimensional grounds, only be a constant multiple of hZR) ; ofcourse when the manifold 
is not of constant curvature, this discussion has physical relevance. This point is taken 
up and pursued further by Dowker and Mayes (1971). The main object of their paper, 
however, is directed to  canonical quantization. They start with the Schrodinger 
equation, but overlook the need when using the normalization (4.48) to use the conserva- 
tive time derivative ; this point is explained by DeWitt (1957). However, since they pro- 
ceed correctly to derive the hamiltonian operator in a form equivalent to  (4.58), this 
oversight is not crucial. Their choice of Schrodinger equation, and in particular the 
use of the Laplace-Beltrami operator, was made because they wanted chiral-invariant 
dynamics. The exclusion of terms involving R ,  RijRij ,  etc was justified ‘by a sort of 
minimal principle’; but as they all but state explicitly, such terms are constants for the 
chiral case. 

They then go on to obtain an expression for the Feynman propagator, namely 

(q”, t”jq’, t’) = J1’ 9(q)exp i dt(L-B) . s (1: 1 
In this expression J1’ is just a normalization constant, and 9 ( q )  is a functional measure 
on the paths in the manifold, related to  the Cartesian measure d ( q )  through 

I \ 

This is a necessary modification which escaped the present author in a different context 
(Charap 1970), but has received a deal of attention elsewhere (eg Charap (1971), the 
earliest reference I can trace is Lee and Yang (1962), although the result is already 
implicit in DeWitt (1957)). 

More relevant to the present discussion is the term B. This term arises in giving a 
meaning to  the functional integrals which appear in the canonical expression for the 
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propagator, namely 

(q", t"(q', t ' )  = N d(p) d(q) exp(iA), s s  
A = J,,, (P dq - - H c b q )  dt). 

with 
t"q" 

This is discussed by the same authors (Mayes and Dowker 1972,1973). The point is that, 
given a classical Hamiltonian H c ,  different definitions of the functional integrals lead to 
different corresponding quantum Hamiltonians. The argument may be inverted, since 
we have an explicit form for the quantum Hamiltonian (viz (4.58)), and we are then led 
to ask : given a method of defining the functional integrals, what should be used as the 
classical Hamiltonian H,? Their conclusion is that for no choice of definition of the 
functional integral may H, be identified with (2.4). There is always to be added an extra 
term, and this is just the term B. To be explicit, with the so-called symmetrization rule 
for defining the functional integrals, they obtain 

Of course, in a parallel discussion of a chiral-invariant relativistic field theory, this 
B term is extremely divergent, being proportional to (S(3)(0))2. The manner whereby 
such terms might arise in such a theory is discussed by Dowker and Mayes (1973), and 
supports the need to  include such terms in the expression for the action so that they 
might eventually cancel out in the evaluation of such quantities as S matrix elements. 
This theme is also discussed by Suzuki and Hattori (1972), who derive S matrix elements 
from the formula 

S = T* exp - i &'ln,(x) d4x ( s  1 
with 

Xlnt(x) = - { Yin*} + 6% + 6'X 

The term 6X given by 

6% = +i6(4)(0) In g 

is that which is needed to go from the group-invariant measure 9 ( q )  to the Cartesian 
measured(q), as has already been indicated. The term { Yint} is a symmetrized expression 
for the interaction lagrangian density, and CY&' arises from symmetrizing the hamiltonian 
density ; explicitly they have 

i (63 (0 ) )2 (gabc :k$  - g f t d ) *  

This term should, we assert, agree with our expression (4.30) for U. It does not, and the 
error can be traced to the fact that Suzuki and Hattori use as their lagrangian density 

which is not chiral invariant if attention is paid to the order of factors. However, they 
go on to apply their result to  an explicit calculation of contributions to the pion self-mass 
and to the pion-pion scattering amplitude, and show that with their choice of 6%' the 
singular parts proportional to  ( c Y ~ ) ( O ) ) ~  are exactly cancelled. To understand how this 
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correct cancellation can come about even with the incorrect formula for 6#', it is only 
necessary to remark that they do  their calculation with the chiral transformations of 
the pion fields given by Weinberg (1968); that is, with 

2 2 - 2  gij = 6ij(l + f n 4  1 . 
In this case our expression for v (modified as  is appropriate for field theory by the 
inclusion of an additional factor (6(3)(0))2) and their exprkssion for 6%' agree, apart from 
a constant which has no effect on the amplitudes they calculate. 

Finally we remark on a paper by Omote and Sat0 (1972), in which the canonical 
approach is used. We concur completely with their results, and have indeed used 
methods broadly comparable with theirs, in particular the resolution of ambiguities of 
ordering by the imposition of a symmetry. 
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